domingo, 20 de octubre de 2013

ALMA sondea los misterios de los agujeros negros gigantes/ALMA Probes the Mysteries of Giant Black Holes

NGC1433 (ESO & HUBBLE)
Dos equipos internacionales de astrónomos han utilizado las capacidades de ALMA (Atacama Large Millimeter/submillimeter Array) para estudiar en detalle los chorros que emiten los enormes agujeros negros del centro de las galaxias y observar cómo afectan a su entorno. Han logrado, por un lado, la mejor imagen obtenida hasta el momento del gas molecular que rodea a un agujero negro cercano y poco activo y, por otro, han captado un inesperado destello de la base de un potente chorro cercano a un agujero negro distante.
En el centro de casi todas las galaxias del universo hay agujeros negros supermasivos — con masas de más miles de millones de veces la masa del Sol —, incluso en nuestra propia galaxia, la Vía Láctea. En un pasado remoto, estos extraños objetos eran muy activos, engullendo enormes cantidades de material de sus alrededores, resplandeciendo con un brillo cegador y eyectando diminutas fracciones de esa materia a través de chorros extremadamente potentes. En el universo actual, la mayor parte de los agujeros negros supermasivos son mucho menos activos que en su juventud, pero la interacción entre los chorros y su entorno aún sigue moldeando a las galaxias.
Dos nuevos estudios publicados hoy en la revista Astronomy & Astrophysics, han utilizado ALMA para sondear los chorros de los agujeros negros a escalas muy diferentes: un agujero negro cercano y relativamente tranquilo en la galaxia NGC 1433 y un objeto muy distante y activo llamado PKS 1830-211.
"ALMA ha revelado la existencia de una sorprendente estructura espiral en el gas molecular cercano al centro de NGC 1433," afirma Françoise Combes (Observatorio de París, Francia), autora principal del primer artículo. "Esto explica cómo fluye el material hacia el interior para alimentar al agujero negro. Con estas nuevas y precisas observaciones de ALMA hemos descubierto un chorro de material que fluye fuera del agujero negro, extendiéndose solo unos 150 años luz. Es el chorro molecular de este tipo más pequeño observado hasta ahora en una galaxia externa".
El descubrimiento de este chorro, que está siendo arrastrado junto con el chorro desde el agujero negro central, muestra cómo este tipo de chorros pueden frenar la formación estelar y regular el crecimiento de los bulbos centrales de las galaxias.
En PKS 1830-211, Ivan Martí-Vidal (Universidad Chalmers de Tecnología, Observatorio Espacial de Onsala, Onsala, Suecia) y su equipo también han observado un agujero negro supermasivo con un chorro, pero este es mucho más brillante y activo y se encuentra en el Universo temprano. Esto resulta inusual ya que su brillante luz, en su camino hacia la Tierra, topa con una galaxia masiva, dividiéndose en dos imágenes debido a la lente gravitatoria.
De vez en cuando, de repente los agujeros negros supermasivos engullen una gran cantidad de masa, lo que aumenta la potencia de los chorros y provoca que la radiación aumente a las energías más altas. Ahora, ALMA ha captado, por casualidad, uno de estos eventos en PKS 1830-211.
"Observar con ALMA este caso de “indigestión” de un agujero negro ha sido totalmente casual. Estábamos observando PKS 1830-211 con otros fines y entonces detectamos sutiles cambios de color e intensidad en las lentes gravitatorias. Tras estudiar con detalle este comportamiento inesperado llegamos a la conclusión de que estábamos observando, por un golpe de suerte, en el momento adecuado, justo cuando nueva materia fresca entraba en la base del chorro del agujero negro", afirma Sebastien Muller, uno de los coautores del segundo artículo.
El equipo también quiso saber si este violento evento fue captado por otros telescopios y se sorprendieron al detectar una clara señal en rayos gamma gracias a las observaciones de monitorización del satélite Fermi-LAT. El proceso que causó el aumento de radiación en longitudes de onda largas, captadas por ALMA, fue también el responsable del gran aumento de brillo en el chorro, alcanzando las energías más altas que pueden obtenerse en el Universo.
"Es la primera vez que se establece una conexión tan evidente entre los rayos gamma y las ondas de radio submilimétricas partiendo de la observación del chorro de un agujero negro", añade Sebastien Muller.
Las dos nuevas observaciones son solo el inicio de las investigaciones de ALMA en torno a los trabajos relacionados con los chorros de agujeros negros supermasivos, tanto cercanos como distantes. El equipo de Combes ya está estudiando otras galaxias activas cercanas con ALMA, y se espera que el singular objeto PKS 1830-211 sea el centro de muchas otras investigaciones futuras con ALMA y otros telescopios.
"Aún queda mucho por conocer acerca de cómo los agujeros negros pueden crear esos enormes y energéticos chorros de materia y radiación", concluye Ivan Martí-Vidal. “Pero los nuevos resultados, obtenidos incluso antes de que se completara la construcción de ALMA, muestran que es una potente herramienta, única para sondear estos chorros — ¡y los descubrimientos no han hecho más que empezar!"

Atacama Large Millimeter/submillimeter Array (ALMA)
Two international teams of astronomers have used the power of the Atacama Large Millimeter/submillimeter Array (ALMA) to focus on jets from the huge black holes at the centres of galaxies and observe how they affect their surroundings. They have respectively obtained the best view yet of the molecular gas around a nearby, quiet black hole and caught an unexpected glimpse of the base of a powerful jet close to a distant black hole.
There are supermassive black holes — with masses up to several billion solar masses — at the hearts of almost all galaxies in the Universe, including our own galaxy, the Milky Way. In the remote past, these bizarre objects were very active, swallowing enormous quantities of matter from their surroundings, shining with dazzling brilliance, and expelling tiny fractions of this matter through extremely powerful jets. In the current Universe, most supermassive black holes are much less active than they were in their youth, but the interplay between jets and their surroundings is still shaping galaxy evolution.
Two new studies, both published today in the journal Astronomy & Astrophysics, used ALMA to probe black hole jets at very different scales: a nearby and relatively quiet black hole in the galaxy NGC 1433 and a very distant and active object called PKS 1830-211.
"ALMA has revealed a surprising spiral structure in the molecular gas close to the centre of NGC 1433," says Françoise Combes (Observatoire de Paris, France), who is the lead author of the first paper. "This explains how the material is flowing in to fuel the black hole. With the sharp new observations from ALMA, we have discovered a jet of material flowing away from the black hole, extending for only 150 light-years. This is the smallest such molecular outflow ever observed in an external galaxy."
The discovery of this outflow, which is being dragged along by the jet from the central black hole, shows how such jets can stop star formation and regulate the growth of the central bulges of galaxies.
In PKS 1830-211, Ivan Martí-Vidal (Chalmers University of Technology, Onsala Space Observatory, Onsala, Sweden) and his team also observed a supermassive black hole with a jet, but a much brighter and more active one in the early Universe. It is unusual because its brilliant light passes a massive intervening galaxy on its way to Earth, and is split into two images by gravitational lensing.
From time to time, supermassive black holes suddenly swallow a huge amount of mass, which increases the power of the jet and boosts the radiation up to the very highest energies. And now ALMA has, by chance, caught one of these events as it happens in PKS 1830-211.
"The ALMA observation of this case of black hole indigestion has been completely serendipitous. We were observing PKS 1830-211 for another purpose, and then we spotted subtle changes of colour and intensity among the images of the gravitational lens. A very careful look at this unexpected behaviour led us to the conclusion that we were observing, just by a very lucky chance, right at the time when fresh new matter entered into the jet base of the black hole," says Sebastien Muller, a co-author of the second paper.
The team also looked to see whether this violent event had been picked up with other telescopes and were surprised to find a very clear signal in gamma rays, thanks to monitoring observations with NASA's Fermi Gamma-ray Space Telescope. The process that caused the increase of radiation at ALMA’s long wavelengths was also responsible of boosting the light in the jet dramatically, up to the highest energies in the Universe.
"This is the first time that such a clear connection between gamma rays and submillimetre radio waves has been established as coming from the real base of a black hole's jet," adds Sebastien Muller.
The two new observations are just the start of ALMA's investigations into the workings of jets from supermassive black holes, near and far. Combes’s team is already studying other nearby active galaxies with ALMA and the unique object PKS 1830-211 is expected to be the focus of much future research with ALMA and other telescopes.
"There is still a lot to be learned about how black holes can create these huge energetic jets of matter and radiation," concludes Ivan Martí-Vidal. “But the new results, obtained even before ALMA was completed, show that it is a uniquely powerful tool for probing these jets — and the discoveries are just beginning!"

Tomado de ESO/Taken from ESO

Artículos científicos/Scientific Papers Combes et al. & Marti-Vidal et al.