Diferentes grupos de astrónomos de todo el mundo observaron la supernova del año 1006. Algunos de ellos, como los chinos, dejaron escrito que el evento astronómico fue visible durante tres años. La anotación más explícita, llevada a cabo por el médico y astrónomo egipcio Ali ibn Ridwan (988-1061) dice que el fenómeno fue tres veces más brillante que Venus, y que la luz que emitía era casi la cuarta parte de la de la Luna llena.
Según Pilar Ruiz Lapuente, codirectora del trabajo e investigadora en el Instituto de Ciencias del Cosmos de la Universidad de Barcelona (ICCUB) y del Instituto de Física Fundamental del CSIC (IFF-CSIC) “en este trabajo se han estudiado todas las estrellas existentes en la misma zona, respecto de su distancia y posible contaminación por elementos de la supernova, y los resultados demuestran que no existe ninguna estrella que pueda ser considerada como el origen de la explosión”
Según Jonay González Hernández del IAC “ Hemos llevado a cabo una búsqueda exhaustiva de la zona en la que tuvo lugar la explosión de la supernova de 1006 y no hemos encontrado nada, lo que nos índice a pensar que este evento fue probablemente el resultado de la colisión y mezcla de dos enanas blancas de masas parecidas”
SN 1006 es del tipo que ocurre en sistemas binaries, consistentes en dos objetos que se mantienen unidos por el tirón gravitatorio. Estos sistemas pueden estar formados por una enana blanca y una estrella compañera normal, que proporciona la masa adicional necesaria para alcanzar la masa crítica de 1,4 veces la del Sol, el llamado límite de Chandrasekhar. Una vez que se alcanza este límite, la estrella estalla y se transforma en supernova. Otra posibilidad es que el sistema implique a dos enanas blancas que se mezclan y originan la supernova.
Las supernovas son explosiones que tienen lugar al final de la vida de las estrellas. Producen una gran cantidad de energía y expelen grandes cantidades de materia a velocidades muy elevadas al medio interestelar. Una supernova del tipo de la del año 1006 es causada por una explosión termonuclear que hace que expela toda su materia y no deje restos estelares. No se han detectado restos de ninguna compañera estelar cerca de SN 1006 lo que implica que la supernova, a más de 1.700 años-luz de la Tierra fue originada por dos enanas blancas que al mezclarse estallaron ambas dejando solo los restos de esta supernova, que es una de las cuatro que se han observado en tiempos históricos en la Vía Láctea.
SN 1006 |
Between 30 April and 1 May of the year 1006 the brightest stellar event ever recorded in history occurred: a supernova, or stellar explosion, that was widely observed by various civilizations from different places on the Earth. More than a thousand years later a team led by researchers from the University of Barcelona, the Instituto de Astrofísica de Canarias (IAC) and the CSIC has found that the supernova of 1006 (SN 1006) probably occurred as a result of the merger of two white dwarfs. The finding has been published in and made the front cover of the international science journal Nature.
Different communities of astronomers all over the world observed the supernova of the year 1006. Some of them, including Chinese astronomers, highlighted the fact that the astronomical event was visible for three years. The most explicit record, made by the Egyptian doctor and astronomer Ali ibn Ridwan (988-1061), notes that the phenomenon was about three times brighter than Venus, and that it emitted light of a quantity equivalent to almost a quarter of the Moon’s brightness.
As co-director of the work, Pilar Ruiz-Lapuente, a researcher at the Institute of Cosmos Sciences (ICCUB) and the Instituto of Fundamental Physics (IFF-CSIC), explains, “In this work the existing stars in the area have been studied, regarding distance and possible contamination by elements of the supernova, and the results show that there is no star that could be considered the progenitor of this explosion”.
The IAC researcher Jonay González Hernández adds, “We have conducted an exhaustive exploration of the area around where the explosion of the supernova of 1006 occurred and have found nothing, which invites us to think that this event was probably the result of a collision and merger of two white dwarf stars of similar mass”.
SN 1006 is of the type that occurs in binary systems, those consisting of two astronomical objects bound together by their gravitational pull. These systems can be formed by a white dwarf and a normal stellar companion that contributes the matter necessary for it to reach a critical mass of 1.4 times the mass of the Sun, the so-called Chandrasekhar limit. Once this mass is reached, the stars explode in a supernova. Another possibility is that the system comprises two white dwarfs that eventually merge to create a supernova.
Supernovae are explosions that occur between stars in the last stage of their lives. They produce a large release of energy and expel huge amounts of matter at high velocity into the interstellar medium. A supernova of the type of that occurred in 1006 is caused by a thermonuclear explosion most likely expelling all its matter and leaving no stellar remnant of the explosion. No rest of a stellar companion has been detected near SN1006. This suggest that the supernova, about 7,000 light years from Earth, was produced by two white dwarfs, merging and ezploding and therefore leaving no trace, except for the supernova, one of only four historical supernovae of this type that have occurred in the Milky Way.
Tomado de/Taken from AlphaGalileo Foundation
Resumen de la publicacion/Abstract of the paper
No surviving evolved companions of the progenitor of SN 1006
Jonay I. González Hernández, Pilar Ruiz-Lapuente, Hugo M. Tabernero, David Montes, Ramon Canal, Javier Méndez and Luigi R. Bedin
Nature 489,533–536 (27 September 2012)
doi:10.1038/nature11447
Abstract
Type Ia supernovae are thought to occur when a white dwarf made of carbon and oxygen accretes sufficient mass to trigger a thermonuclear explosion. The accretion could be slow, from an unevolved (main-sequence) or evolved (subgiant or giant) star (the single-degenerate channel), or rapid, as the primary star breaks up a smaller orbiting white dwarf (the double-degenerate channel). A companion star will survive the explosion only in the single-degenerate channel. Both channels might contribute to the production of type Ia supernovae, but the relative proportions of their contributions remain a fundamental puzzle in astronomy. Previous searches for remnant companions have revealed one possible case for SN 1572, although that has been questioned10. More recently, observations have restricted surviving companions to be small, main-sequence stars, ruling out giant companions but still allowing the single-degenerate channel. Here we report the results of a search for surviving companions of the progenitor of SN 1006. None of the stars within 4 arc minutes of the apparent site of the explosion is associated with the supernova remnant, and we can firmly exclude all giant and subgiant stars from being companions of the progenitor. In combination with previous results, our findings indicate that fewer than 20 per cent of type Ia supernovae occur through the single-degenerate channel.
No hay comentarios:
Publicar un comentario